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More complex oscillations of systems may be used as references, for which it is possible 
to determine the viscoelastic properties and its density by a combination of calculation forn- 
ulas. 

Similarly, it is possible using (171, to obtain expressions for the medium characteristics, 
when the medium surrounds the shell, and the oscillations are recorded on its inner surface. 

The proposed principle can also be extended to some other shell forms. 
For the practical realization of the proposed method it is necessary to know the displace- 

ments and stresses on the observation surface S, and process the data obtained using the 
formulas proposed above. 

Analog and discrete systems of three-dimensional processing have found wide application 
in acoustic measurements 15, 7/. An example of the use of a discrete system is the set of 
transducersofdisplacement (velocity , acceleration) on the surface of a technological apparatus 
shell (the acceptable pitch transducers is determined using Kotel'nikov's theorem). ’ The 
displacement pickup (velocities, accelerations) and stresses (pickup elements of strain gauge) 
may alternate anda concurrentmeasurement of stresses and displacements does not'cause any 
difficulties. Further data processing can be carried out on simple computing equipment. 

Since the proposed method does not require the oscillations to be of any specific form, 
it is possible to excite the shell by a priori specified stresses (e.g., application of a 
point force) and measure only displacements. 

In the analog form of the measurement system it is possible to use electromechanical 
transducers located around the shell and performing direct integration in analog form of shell 
displacements by the summation of emfs, currents, charges, magnetic fluxes, etc. 

Note that since the form of the oscillations is arbitrary, it is possible to excite in 
the shell oscillations that decay rapidly with distance (non-uniform waves), while at the 
same time reducing the observation surface. 
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REPRESENTATION IN TERMSOF p-ANALYTICFUNCTIONS OF THE GENERAL SOLUTION 
OF EQUATIONS OF THE THEORY OF ELASTICITY OF A TRANSVERSELY ISOTROPIC BODY* 

O.G. GOMAN 

A general solution is given for the equations of the theory of elasticity 
in terms of p-analytic functions for a transversely isotropic body in a 
non-axisymmetric stress state. This representation was obtained in /l/ 
for an isotropic medium. For the transport medium a similar representation 
is known only for the axisymmetric problem /2--41. 

1. We shall call the function 

f(G r)=p(z, r) + iQ(z, r)s( ;)a 

*Prikl.Matem.Hekhan.,48,1,98-104,1984 
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(rk, d -analytic (or (k,a) -analytic), if p and g satisfy the system 

Although by a change of scale by one variable, for example z = < , the (k,a)-analytic 
function f(z,r) can be reduced to the conventional rk-analytic function f&r) /5/, there 
is an undoubted advantage in using (k,a)-analytic functions directly, as will be shown below. 

For work with such functions it is advantageous to introduce metric differentialoperators 

Using these operators, the conditions of (k,a)-analyticity (l.l), of (-k, a)-analyticity, 
of (k, atanti-analytisity and (-k,a)-anti-analyticity, of the function p j ip can be written, 
respectively, in the form 

Mk -“(;)=‘* gka(;)=o, &=(;)=o, Mk(‘+o 

The properties of these functions and operators are similar to those in /I/. For example, 
the general solution of equation 

(1.2) 

is the sum of the (k, a)-analytic function cp + i\p and of the (k, a)-anti-analytic function 
O- iY. 

2. We will use the equations of the theory of elasticity for an isothermal transportmedium 
in displacements /6/, and for further purposes we will write them in the form 

where w, u, v axe the axial, radial and tangential displacements in the cylindrical coordin- 
ate system (z,r,t)), z is an, as yet, arbitrary parameter, AI) are the moduli of elasticity, 
and it is assumed that 8% > 0. 

Eliminating from (2.2) and (2.3) the quantity 63 I we will show that the function 

satisfies the equation 

(2.41 

Let us assums that ID, u and v can be represented by the Fourier series 

w=wO1+ Zw,'cosn0+w,"sinnB 
nz=1 

u=&#'-/- ~u,'cosne+tL,~siilne 
-1 

v=LQ+ r); -~~~sinntf + v,acosnB 
ruril 
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Then for n = 0 

(2.5) 

(2.6) 

(2.7) 

and for n>i we have the system 

both 

a%7 &++qb t +$_+n+N~ M ( (2.8) 

&+?$++?+!&,+++R'aa,~o (2.9) 

B'-;isr 
a% +$++z!&na,+ --r---v,++,+R+61,=0 (2.10) 

+++z$; U.;"y" 

The superscripts in (2.8)-(2.10) are omitted; since these equations are the same for 
superscripts. 
We will convert system (2.8)-(2.10) to a form that is more convenient for using matrix 

operators. We put 

Subtracting and 

u n = 43 - v,, v, = u, + v, 
adding (2.9) and (2.10), we obtain the equations 

It can be directly verified that 

(&+f$ _J!!$I)V”=T,- 

T,* = (++Pn+++F+)on 

Pn= I nu, - g (run) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

where 0, is one of the coefficients of the Fourier series of o. It follows from (2.4) that 
% satisfies the equation 

We multiply formula (2.13) by the coefficient n and add it to (2.111, and carry out a 
similar operation on (2.14) and (2.12). After dividing the results obtained by (1 + 'I), we 
have 

_““-+($+f$_kp_)un_Ln+ P 
i + 9 a9 (2.16) 

(2.17) 

Inspection of (2.16) and (2.17) together with (2.8) shows that the two parameters z and 
n can be selected so that the.equations 

are satisfied. This results in the following equation for r: 

A,,+ - (A,,A,, - A,,% - 2A,,A,,) T + AwAsr’ = 0 (2.18) 
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The roots of this equation z1 and z2 can be real or complex /6/, and << and 1/g can- 

not be purely imaginary. We shall, therefore, assume that at least one root of (2.18) is 
positive, and shall use it subsequently. 

Note that for an isotropic material zl=Q= 1, so that for a "not strongly" anisotropic 
material the roots of (2.18) can be both taken as positive; they are both positive, provided 
that 

A,,Aa, - A,,a - 2&L> 2-4~ ?-&ASS, AIP>O 

Using the positive root of (2.181, we reduce (2.81, (2.16) and (2.17) to the form 

where 

From (2.19) -_(2.21) we can establish that #, satisfies the equation 

We further assume that rz# up, fl*+.a), and fi" f yz. 

3. Using the substitutions 

ut, = r”z,, 6, = i-V,, U, = fin*%) Y,, 0, = r”+lq 

we reduce (2.19) and (2.20) to the form 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(3.1) 

in which by virtue of (2.22) the function @,, is (2n -j- &@-harmonic 
% is (2n i- 1, @-harmonic. 

, and by virtue of (2.15) 

The solution of (3.1) is constructed in almost the same way as that of an isotropicmedium 
/l/, and has the form 

(3.2) 

i 
A= lk B =-t Al--O, B,=L ’ hJ 

cc~fp-a~) ’ yp - a2 i+TJcr’-8’ ) 

where the first two terms according to (1.2) represent the solution of the homogeneous system 
(3.1) (and 4+, $ iY, and P, + iQo, are arbitrary (2n + 1, a)-analytic functions) ; the third 
term i .s a particular solution of (3.1) when a, =0 and for arbitrary 6, of this class; the 
last term represents a particular solution for 8, = 0 and arbitrary a_. 

For a (2n i- 1, yf-analytic function P,+ iQn the following condition is satisfied: 

dP,ldz = @,, (3.3) 

and for a (2n + 1, p)-analytic function P,, + iQm the condition 

d~~*~~ = a,, (3.4) 

is satisfied. 
Note that for an isotropic medium a = y = 1, and a solution of the form (3.2) does not 

exist. This is related to the difference in the representation of the solutions for the 
transtropic and isotropic media, as shown in /l/. 

Introducing the substitutions 
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u, n = r-n.&*, en zz r-n en*, 1/, = m-1 y,*, m,, = r-“+Ib,* 

(2.21) and (2.19) can be written in the form 

(3.5) 

where @,* is (-2n + 1, y)-harmonic, and b,* (-272 f 1, fi)-harmonic. The solution of (3.5) in 
which @,,* and b,* are so far regarded as arbitrary functions, have the form 

;;ere the functions @,,* -I- i'Y,* and P,,,,* + iQ,* are (2n -1, cc)-analytic, and P,* + iQ,* is 
n - 1, y),-analytic, and 

dQ,*ldz = 0,* (3.7) 

and function PI,,* f iQ,,* is (2n - 1, B)-analytic and 

dQ1,*ldz = b,* (3.8) 

When (3.3), (3.4), (3.71, and (3.8) are satisfied, (3.2) and (3.6) may be considered as 
the general solution of (2.19)-(2.21) for arbitrary functions 6, and 0,. If these functions 
are to provide the general solution of the theory of elasticity, the identities 

must be satisfied. 
In addition, the functions considered are connected by three more relations 

Q,,* = rZ”P,, QIn* = FP,,,, Z,,* = rZnZn (3.10) 

The first of these follows from (3.3) and (3.7), the second from (3.4) and (3.8) 
third from the formulas for w,,.) 

, and the 

The presence of the five conditions (3.9) and (3.10) in formulas (3.2) and (3.6) reduces 
the arbitrariness from eight to three functions. Using the above conditions, we can obtain 

The final solution of (2.19)-(2.21) can be written in the form 

(3.9) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

All three functions 0,, + i'i',, P, + iQ, and PI, -I- iQ1, in (3.13) can be regarded as arbitr- 
ary; the remaining functions can be expressed in terms of these three, because the first two 
formulas (3.10) and (3.12) define the relation between the functions of the second row of 
formula (3.14), and the functions of the first row of formula (3.13). 

For the axisymmetric problem (2.5), (2.6) the solution has the form 

which is equivalent to the results in /2/. 
The general solution of (2.7) that defines the twisting of a transtropic medium may be 

represented either in the form vn' = r@,,, where m0 is a (3, b )-harmonic function, or in the 

form VI,? c r-lvY,* , where YO*is a C-1, fj )-harmonic function. 
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As in the isotropic case /I/ we can introduce three (?JZ $ l)-harmonic functions that with 

explicitly express all interconnected functions of (3.13) and (3.14). For this we introduce 
the (2n + 1, aj-harmonic function cF,, , the (2n -f- l.y)-harmonic function Y,,, and the (2n + 1, 
fi)-harmonic function x,, fox which 

The displacements can be expressed in terms of the functions introduced as follows: 

(3.15) 

The representations (3.13), (3.14), or (3.15) may be considered as an analog of the 
Kolosov-Muskhelishvili formulas for the three-dimensional stress state of a transversely iso- 
tropic medium. 

We note in conclusion that all of the formulas derived remain valid when the roots of 
Eq.(2.18) are complex. It is only necessary to introduce into consideration (rk, a)-analytic 
functions with complex constants a. 
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SPECTRAL RELATIONSHIPS FOR THE INTEGRAL OPERATORS GENERATED BY A KERNEL IN 
THE FORM OF A WEBER-SO~IN INTEG~L, AND 
THEIR APPLICATION TO CONTACT PROBLEMS* 

S.M. MKHITARIAN 

Generalized potential theory methods are used to re-establish the spectral 
relationship fl/ for the integral operators generated by a symmetric kernel 
in the form of the Weber-Sonin integral in the finite interval (0, 0) I the 
kernel containing Jacobi polynomials. Spectral relations are also 
established for the integral operator generated by the same kernel in the 
semi-infinite interval (a.~), and other allied relationships. The latter 


